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Principals and Practice of Cryptocurrencies

Cornell CS 5437, Spring 2016 

Simulation
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Example – Gossip 

• A messages is generated at 
one machine 

• Message processing time:  
random 0 - 1sec 

• After processing, node 
chooses random neighbor and 
sends message 

• Sending time: 
random 0 – 1sec 
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Why A Simulation? 

Formal 
analysis

Working 
system 

experiment

Simulation Proof of 
concept 

experiment
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Why A Simulation? 

Formal 
analysis

Working system 
experiment

Simulation Proof of concept 
experiment

• How complex a model? 
• Over-detailed --> overly complicated 
• Insufficient details --> inaccurate (or wrong) 

Formal Analysis Simulation Experiment

Simple models Complex models Real world

Basic understanding, 
parameter interaction

Per-run results –
cheap runs

Per-run results –
expensive runs

Scale to arbitrary 
system parameters

Cheap scaling Expensive scaling 
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Event Driven Simulation 

Time-driven simulation: second by second 

Event-driven simulation: event by event 

Which is more accurate? 
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Time Event

1 Message 𝑚 arrived at node 𝑖

1.3 Message 𝑚 arrived at node 𝑗

Event Driven Simulation 

Time-driven simulation: second by second 

Event-driven simulation: event by event 

No tradeoff 
between 
efficiency 

and accuracy 
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Process-Oriented Simulation 

• Use an object per entity 
• Store individual object state, and let object react to events 

Time Entity Event

1 node 𝑖 Message 𝑚 arrived

1.3 node 𝑗 Message 𝑚 arrived
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Input
Includes both model details and runtime inputs 

• Synthetic, e.g., 
• Topology of huge system 
• Input arrival times 

• Traces, measurement-based, e.g., 
• Input arrival times 
• Processing times 
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Output 
Data collection: 
• Output as much data as possible (probably in a log), but not 

too much – it can easily explode. For example:  
• Message arrival time at each node: 

Can then calculate 90th percentile propagation time 
without re-running 

• But not every send / processing-start event 

Tips: 
• Output meaningful data during long runs 
• Output execution parameters in log 
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Executions 
Multiple executions 
• Each with different random inputs 
• Warmup

• Do not consider for statistics 
• E.g., when multiple messages are propagated together, 

let queues stabilize 
• Or a single long run, divided to sections 
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Restart and Avoiding It 

• Memoize
• Carefully while you’re debugging… 

• Checkpoint 
• For crash handling
• If you decide continue, to avoid restart 
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Probability 

• An experiment produces a random results, 𝜔
• The sample space Ω is all possible results, 𝜔 ∈ Ω
• An Event is a subset of the sample space, 𝐸 ⊂ Ω
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Probability 
• Every event 𝐸 has a probability 0 ≤ 𝑃 𝐸 ≤ 1
• The conditional probability of A given B is the probability of A given 

the B is true; 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵

• A random variable is a function from the sample space to a discrete 
or continuous range 

• A random variable has a Cumulative Distribution Function (CDF): 
𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥

𝐹𝑋 𝑥
𝑥→−∞

0, 𝐹𝑋 𝑥
𝑥→∞

1
• A discrete random variable has a probability per value 
• A continuous random variable has a probability distribution function

𝑓𝑋 𝑥 = 𝐹𝑋
′ 𝑥
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Probability 
• The mean of a variable 𝑋 is 

𝐸 𝑋 =  
−∞

∞

𝑥𝑓𝑋 𝑥 𝑑𝑥

• The variance of a variable 𝑋 is 
var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2 = 𝐸 𝑋2 − 𝐸 𝑋 2
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Example – Bernoulli distribution

• Bernoulli distribution: 
E.g., due to a biased coin toss, resulting in heads (𝜔1) or tails (𝜔2) 

𝑋 =  
1 heads
0 tails

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝
𝐸 𝑋 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝
var 𝑋 = 𝑝 1 − 𝑝
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Example – Normal Distribution 
E.g., height, measurement errors 

𝑁(𝜇, 𝜎2)

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
𝑥−𝜇 2

2𝜎2

𝐸 𝑋 = 𝜇
var 𝑋 = 𝜎2

The standard normal distribution is 𝑁(0, 1). 
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Example – Normal Distribution 
The law of large numbers: The average of Independent and 
Identically Distributed (IID) random variables converges to the 
mean of the distribution they are sampled from. 

The central limit theorem: the average of IID random variables is 
approximately normally distributed. 
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Example – Exponential Distribution 

E.g., interval between phone calls

𝑓 𝑥 =  𝜆𝑒
−𝜆𝑥 𝑥 ≥ 0
0 otherwise

𝐹 𝑥 =  1 − 𝑒−𝜆𝑥 𝑥 ≥ 0
0 otherwise

𝐸 𝑋 = 1/𝜆
var 𝑋 = 1/𝜆2
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Memorylessness

𝑷 𝑿 > 𝒔 + 𝒕|𝑿 > 𝒕 =
𝑃 𝑋 > 𝑠 + 𝑡 ∩ 𝑋 > 𝑡

𝑃 𝑋 > 𝑡

=
𝑃 𝑋 > 𝑠 + 𝑡

𝑃 𝑋 > 𝑡
=
1 − 𝐹(𝑠 + 𝑡)

1 − 𝐹(𝑡)
=
𝑒−𝜆 𝑠+𝑡

𝑒−𝜆𝑡

= 𝑒−𝜆𝑠 = 1 − 𝐹 𝑠 = 𝑷 𝑿 > 𝒔

For an exponential random variable, 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥: 

It doesn’t matter how long you have been waiting for the bus
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Psuedo Random Number Generator 

• No real randomness 
• PRNG has state and output 

• State changes on every 
output request 
(loops, but usually not an issue) 

• Can be reset with given seed 

1  >>> import random

2  >>> random.random()

3 0.28651040107085957

4  >>> random.random()

5 0.1796791064694051

6  >>> random.seed(42)

7  >>> random.random()

8 0.6394267984578837

9  >>> random.random()

10 0.02501075522266693

11 >>> random.seed(42)

12 >>> random.random()

13 0.6394267984578837

14 >>> random.random()

15 0.02501075522266693



C
o

rn
el

l C
S 

5
4

3
7

 ©
 It

ta
y 

Ey
al

, 2
0

1
6

23

Use Object PRNG 

1 >>> randA = random.Random(42)

2 >>> randB = random.Random(42)

3 >>> randA.random()

4 0.6394267984578837

5 >>> randB.random()

6 0.6394267984578837

7 >>> randA.random()

8 0.025010755222666936

9 >>> randB.random()

10 0.025010755222666936

• Program modular 
• Reset global PRNG in 

each module? 
• No – object PRNG per 

module 
• Seed module’s PRNG 

on init
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PRNG for Simulation 

• Different seeds for different runs 
• Reproducibility (mostly for debugging) 

• Manually change between runs 
• Seed time, but record seed for reproduction
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Inverse Transform Sampling 

0.5

3

1

PDF

CDF

CDF-1

1

3𝑓 𝑡 =  
0.5 1 ≤ 𝑡 < 3
0 otherwise

𝐹 𝑡 =  
0 𝑡 < 1

0.5(𝑡 − 1) 1 ≤ 𝑡 < 3
1 𝑡 ≥ 3

𝐹−1 𝑢 = 1 + 2𝑢

>> randA = random.Random()

>> x = 1 + 2 * randA.random()
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Statistical Analysis 

Given a finite set of measurements 

• Estimate the properties of the sampled space 
• Estimate the estimation accuracy 

Stop when the accuracy is sufficient. 
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Statistical Analysis 
Take a sample of size 𝑛 {𝑥_𝑖, 1 ≤ 𝑖 ≤ 𝑛} of independent measurements. 
E.g., simulation propagation times from 𝑛 runs. 

Sample are taken from a population with probability distribution with 
mean 𝜇 and variance 𝜎2. (𝜇 and 𝜎 are unknown) 

• The sample mean is: 

 𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑥𝑖

• The sample variance is: 

𝑆2 =
1

𝑛 − 1
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2
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Statistical Analysis 
But the sample mean is a random variable. 

The mean of  𝑥 is 𝜇. 

So  𝑥 is an estimator of 𝜇

•  𝑥 is not 𝜇, and 
• 𝑆 is not 𝜎
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Statistical Analysis 
What is the variance of  𝑥? 
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Statistical Analysis 
What is the variance of  𝑥? 

var  𝑥 =
𝜎2

𝑛

More samples --> smaller variance -->  𝑥 probably closer to 𝜇

But we can only take a finite number of samples 𝑛. 
And we don’t have 𝜎, only 𝑆. 
So we need to estimate 𝜎2. 
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Statistical Analysis 
What is the mean of 𝑆2? 
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Statistical Analysis 

𝑆2 =
1

𝑛 − 1
 

𝑛=1

𝑛

𝑥𝑖 −  𝑥 2 =
1

𝑛 − 1
 

𝑛=1

𝑛

𝑥𝑖 −
1

𝑛
 

𝑗

𝑥𝑗

2

=

=
1

𝑛 − 1
 

𝑛=1

𝑛

(𝑥𝑖−𝜇) −
1

𝑛
 

𝑗

(𝑥𝑗−𝜇)

2

=

=
1

𝑛 − 1
 

𝑖

𝑥𝑖 − 𝜇 2 +
1

𝑛2
 

𝑗

(𝑥𝑗−𝜇)

2

−
2

𝑛
(𝑥𝑖−𝜇) 

𝑗

(𝑥𝑗−𝜇) =

=
1

𝑛 − 1
 

𝑖

𝑥𝑖 − 𝜇 2 +
1

𝑛(𝑛 − 1)
 

𝑗

(𝑥𝑗−𝜇)

2

−
2

𝑛 𝑛 − 1
 

𝑖

(𝑥𝑖−𝜇) 

𝑗

(𝑥𝑗−𝜇) =
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Statistical Analysis 

1

𝑛 − 1
 

𝑖

𝑥𝑖 − 𝜇 2 +
1

𝑛(𝑛 − 1)
 

𝑗

(𝑥𝑗−𝜇)

2

−
2

𝑛 𝑛 − 1
 

𝑖

(𝑥𝑖−𝜇) 

𝑗

(𝑥𝑗−𝜇) =

=
1

𝑛 − 1
 

𝑖

𝑥𝑖 − 𝜇 2 −
1

𝑛(𝑛 − 1)
 

𝑖

𝑥𝑖 − 𝜇 2 + 

𝑖

 

𝑗≠𝑖

(𝑥𝑖 − 𝜇)(𝑥𝑗 − 𝜇) =

=
1

𝑛
 

𝑖

𝑥𝑖 − 𝜇 2 −
1

𝑛(𝑛 − 1)
 

𝑖

 

𝑗≠𝑖

(𝑥𝑖 − 𝜇)(𝑥𝑗 − 𝜇)

𝐸 𝑆2 =
1

𝑛
 

𝑖

𝐸 𝑥𝑖 − 𝜇 2 −
1

𝑛 𝑛 − 1
 

𝑖

 

𝑗≠𝑖

𝐸 𝑥𝑖 − 𝜇 𝑥𝑗 − 𝜇 = 𝜎2
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Statistical Analysis 
What is the mean of 𝑆2? 𝜎2. 
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Confidence Interval 
With the standard normal distribution 𝑁(0, 1), define 𝑧𝛼/2 to be the 

point for which the integral to the right is 𝛼/2. 
(tables online) 

𝑃 −z𝛼/2 ≤ 𝑧 ≤ 𝑧𝛼/2 = 1 − 𝛼

0 𝑧𝛼/2

Area is 𝛼/2

For example, for 𝛼 = 0.05, 𝑧0.025 = 1.96
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Confidence
So how accurate is the estimate  𝑥? 
If the 𝑥𝑖’s are normally distributed: 𝑥𝑖 = 𝑁(𝜇, 𝜎), let 

𝑍 =
 𝑥 − 𝜇

𝜎
𝑛

𝑍 is normally distributed 𝑍 = 𝑁 0, 1 . So 

𝑃 −𝑧𝛼/2 ≤ 𝑍 =
 𝑥 − 𝜇

𝜎
𝑛 ≤ 𝑧𝛼/2 = 1 − 𝛼

𝑃  𝑥 −
z𝛼/2𝜎

𝑛
≤ 𝜇 ≤  𝑥 +

z𝛼/2𝜎

𝑛
= 1 − 𝛼

For confidence level 1 − 𝛼, 

the confidence interval is  𝑥 −
z
𝛼/2𝜎

𝑛
,  𝑥 +

z
𝛼/2𝜎

𝑛
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Confidence Interval 
• Since we don’t have 𝜎, we approximate with S. 
• Although the 𝑥𝑖’s are not necessarily normally distributed, according 

to the central limit theorem, it’s a good approximation for their sum. 
Thumb rule: 𝑛 ≥ 30. 
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Example

Index Value

1 1.9

2 2.0

3 1.9

4 2.0

5 2.1

6 1.9

7 2.1

8 2.1

9 2.1

10 2.1

 𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑥𝑖 = 2.05

𝑆2 =
1

𝑛 − 1
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2 = 0.009

𝑧0.05/2 = 1.96

 𝑥 ± 𝑧0.05/2
𝑆

𝑛
= 1.99,2.11
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Statistical Analysis 

Given a finite set of measurements 

• Estimate the properties of the sampled space 
• Estimate the estimation accuracy 

Stop when the accuracy is sufficient. 
E.g., the confidence interval is of length 0.01sec with a 
confidence level of 95%. 



C
o

rn
el

l C
S 

5
4

3
7

 ©
 It

ta
y 

Ey
al

, 2
0

1
6

Difficulty and Block Interval



C
o

rn
el

l C
S 

5
4

3
7

 ©
 It

ta
y 

Ey
al

, 2
0

1
6

44

Bitcoin’s Block Difficulty

• Hash (SHA2562) of legal block is smaller than a target 
• Target is a 256bit value 
• Stored as a 32bit field called bits in blocks 

0x180BC409 0BC409 ⋅ 28 18−3

Bits: Target
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Bitcoin’s Block Difficulty

• Hash (SHA2562) of legal block is smaller than a target 
• Target is a 256bit value 
• Stored as a 32bit field called bits in blocks 
• Largest target (targetmax) is defined by bits 0x1d00ffff: 

0x00000000FFFF0000000000000000000000000000000000000000000000000000

• Difficulty is defined with respect to the largest target: 

difficulty =
largest target

target
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Bitcoin’s Block Difficulty

How long does it take to find a value smaller than 
0x00000000FFFF0000000000000000000000000000000000000000000000000000

Or simply: 
0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

? 

But wait – the nonce field size… 
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Bitcoin’s Block Difficulty
How is the target adjusted? 

• Once every 2016 blocks (2016/7/24/6 = 2 weeks) 
• 2016 blocks ago was 𝑡0
• Last block was 𝑡𝑓
• Total time is Δ = 𝑡𝑓 − 𝑡0 seconds 

• Difficulty before 𝐷𝑜𝑙𝑑
• Estimate of total hashes calculated: 2016 × 232𝐷𝑜𝑙𝑑

We want to find 𝐷𝑛𝑒𝑤 such that it will take the system 10 
minutes on average to find a block. HW 
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Agenda

• Difficulty calculation 
• Time to find a block 
• Difficulty automatic tuning 
• Minimum of two exponentials and fair mining 


