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Example — Gossip

A messages is generated at

ohe machine

Message processing time:

random O - 1sec

After processing, node
chooses random neighbor and

sends message
Sending time:
random 0 — 1sec
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Why A Simulation?

Formal
analysis

Simulation Proof of Working
concept system
experiment experiment




Cornell CS 5437 © Ittay Eyal, 2016

Why A Simulation?

Formal Simulation Proof of concept Working system
analysis experiment experiment
__Formal Analysis | Simulation | Experiment

Simple models Complex models Real world

Basic understanding, Per-run results — Per-run results —
parameter interaction cheap runs expensive runs
Scale to arbitrary Cheap scaling Expensive scaling

system parameters

e How complex a model?
* Over-detailed --> overly complicated
* Insufficient details --> inaccurate (or wrong)



Cornell CS 5437 © Ittay Eyal, 2016

Event Driven Simulation

Time-driven simulation: second by second

Event-driven simulation: event by event

Which is more accurate?
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Event Driven Simulation

Time-driven simulation: second by second

Event-driven simulation: event by event

Message m arrived at node i

Message m arrived at node j

No tradeoff
between
efficiency

and accuracy
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Process-Oriented Simulation

 Use an object per entity
e Store individual object state, and let object react to events

Time Entity |Event

1 nodei Message m arrived
1.3 nodej Message m arrived
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Input

Includes both model details and runtime inputs

* Synthetic, e.g.,
 Topology of huge system
* Input arrival times
 Traces, measurement-based, e.g.,
* Input arrival times
* Processing times
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Output

Data collection:
* OQutput as much data as possible (probably in a log), but not
too much — it can easily explode. For example:
 Message arrival time at each node:
Can then calculate 90t percentile propagation time
without re-running
* But not every send / processing-start event

Tips:
* Output meaningful data during long runs
* OQutput execution parameters in log
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Executions

Multiple executions
 Each with different random inputs
* Warmup
Do not consider for statistics
 E.g.,, when multiple messages are propagated together,
let queues stabilize
 Orasingle long run, divided to sections

10
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Restart and Avoiding It

Memoize

e Carefully while you’re debugging...
Checkpoint

* For crash handling

* If you decide continue, to avoid restart
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Corn

Probability

 An experiment produces a random results, w
* The sample space Q is all possible results, w € (2
 An Event is a subset of the sample space, E C ()

13
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Probability

Every event E has a 0<PIE] <1
The of A given B is the probability of A given
: P[ANB]
the B is true; P|A|B] =
P[B]
A is a function from the sample space to a discrete
or continuous range
A random variable has a (CDF):
Fx(x) = P(X < x)

X — 00

Fy(x) —0,  Fx(x)—1
A discrete random variable has a probability per value
A continuous random variable has a

fx(x) = Fx(x)

15
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e The

e The

Probability
of a variable X is
FIX) = | xfe@dx

of a variable X is
var[X] = E[(X — E[X])?] = E[X?] — (E[X])?

16
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Example — Bernoulli distribution

 Bernoulli distribution:
E.g., due to a biased coin toss, resulting in heads (wq) or tails (w,)

|1 heads
X_{O tails
PIX=1]=p,PI[X=0]=1-p
ElX]=1-p+0-(1-p)=p
var[X] = p(1 — p)

17
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Example — Normal Distribution

E.g., height, measurement errors

N(u, o)

The standard normal distribution is N(0, 1).

18
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Example — Normal Distribution

: The average of Independent and
|dentically Distributed (IID) random variables converges to the
mean of the distribution they are sampled from.

: the average of |ID random variables is
approximately normally distributed.

19
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Example — Exponential Distribution

E.g., interval between phone calls

le7* x =0
flx) = ~
0 otherwise
)
, -1
F(x) =1+~ °¢ ) xzo_
.0 otherwise
ElX]=1/2

var[X] = 1/4%

20
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Memorylessness

For an exponential random variable, F(x) = 1 — e ~**;

PIX>s+tnNnX >t]
PIX>s+tX>t]=

P[X > t]
_P[X>S+t]_1—F(S+t)_e"1(5+t)
PIX>t]  1-F(@t) e

= e =1—-F(s) = P[X > s]

21
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Psuedo Random Number Generator

No real randomness
PRNG has state and output

State changes on every

output request
(loops, but usually not an issue)

Can be reset with given seed

O J o U1l x W DN

e e e e = Ve
O W NP o

>>> 1mport random

>>> random.random ()
0.28651040107085957
>>> random.random ()
0.1796791064694051
>>> random.seed (42)
>>> random.random ()
0.6394267984578837
>>> random.random ()

>>> random.seed (42)
>>> random.random ()

0.6394267984578837
>>> random.random ()

22
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Use Object PRNG

Program modular
Reset global PRNG in
each module?

No — object PRNG per
module

Seed module’s PRNG

on init

= O 0 J o Ul i W DN

>>> randA = random.Random(42)
>>> randB = random.Random(42)
>>> randA.random()
0.6394267984578837
>>> randB.random()
0.6394267984578837
>>> randA.random ()

>>> randB.random ()

23
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PRNG for Simulation

Different seeds for different runs
Reproducibility (mostly for debugging)
* Manually change between runs
* Seed time, but record seed for reproduction

24



Cornell CS 5437 © Ittay Eyal, 2016

Inverse Transform Sampling

(05 1<t<3

f) = { 0 otherwise

0 t<1
F(t)={05(t—1) 1<t<3

1 t >3

F71(uw) =1+ 2u

>> randA = random.Random/()
> x =1 + 2 * randA.random()

0.5

| CDF

________________________________________________
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Corn

Statistical Analysis

Given a finite set of measurements

* Estimate the properties of the sampled space
* Estimate the estimation accuracy

26
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Statistical Analysis

Take a sample of sizen {x_i,1 < i < n} of independent measurements.
E.g., simulation propagation times from n runs.

Sample are taken from a population with probability distribution with
mean u and variance ¢?. (1 and ¢ are unknown)

e The sample mean is:

Xi

=

1
X =—
n "
=1
* The sample variance is:

2 AN =2
> =n—1z(xi_x)
i=1

27
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Statistical Analysis

But the sample mean is a random variable.
The mean of X is u.
So X is an estimator of u

e Xisnotu,and
e Sisnoto

28
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Statistical Analysis

What is the variance of x?

30
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Statistical Analysis

What is the variance of x?

0.2

var|x| = —

More samples --> smaller variance --> x probably closer to u

But we can only take a finite number of samples n.
And we don’t have o, only S.
So we need to estimate o2.

33
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Statistical Analysis

What is the mean of S$2?

34
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n—1

Statistical Analysis

1 X 1 X 1 a
‘n—l,;(’“"“) 1(z> _
n 2

1 1
3 (-3 een) -
n=1 ]

1 1 2 2
=Tl—1 . ((Xi _IJ)Z +E<Z(Xj_ﬂ)> —n(xi—,u)Z(xj—u)) =

Z(x — W+ n(n_l)(Z(x —u)) —— )Z<x u)Z(x ) =

35
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n—1

Statistical Analysis

! z(xi—u)2+n(n1_ 0 (Z(xj u)) n(n_l)Z(xl M)Z(x] —K) =

n—lz(x‘ 7 n(n—1)<z(xl 02+ ), ) i = G - m)

i j#i

Z(»cl 07 = s DY G = )G — )

I j#i

:%ZE[(xi—.U)Z] n(n_l)zzw

I j#i
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Statistical Analysis

What is the mean of S2? o2.

37
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Confidence Interval

With the standard normal distribution N (0, 1), define z,/, to be the

point for which the integral to the right is a /2.
(tables online)

P[—za/z <z< Za/z] =1—-a«a

For example, for & = 0.05, z5 ¢,5 = 1.96

Areais a /2

0 Za/z

38
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Confidence

So how accurate is the estimate x?
If the x;’s are normally distributed: x; = N(u, o), let

f_
7 = G”\/ﬁ
Z is normally distributed Z = N(0,1). So
X —U
P[—Za/ZSZ= - \/ﬁSZaﬁ]:l—a
Z 1,0 7 1,0
p |z — 242 <u<zi+ 2 | _1_q
Vn Vn
For 1—q,
Z o) Z o)
|- Taf” a/z]
the |s[x \/ﬁ,x+ N

39
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Confidence Interval

Since we don’t have g, we approximate with S.

Although the x;’s are not necessarily normally distributed, according
to the central limit theorem, it’s a good approximation for their sum.
Thumb rule: n = 30.

40
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Example

n

1 1.9 1

5 2.0 X = Ez Xi = 2.05

3 1.9 =1

) 20 52 = Z(xi — %)2 = 0.009
5 2.1 ’n—li=1

° L Zo.05/2 = 1.96

7 2.1 S

8 2.1 X X Zg,05/2 \/_ﬁ =((1.99,2.11)

9 2.1

10 2.1
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Statistical Analysis

Given a finite set of measurements
* Estimate the properties of the sampled space

* Estimate the estimation accuracy

E.g., the confidence interval is of length 0.01sec with a
confidence level of 95%.

42



Difficulty and Block Interval
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Bitcoin’s Block Difficulty

e Hash (SHA256%) of
 Target is a 256bit va
 Stored as a 32bit fie

Bits:

egal block is smaller than a target
ue
d called bits in blocks

Target
. 28(18—3)
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Bitcoin’s Block Difficulty

Hash (SHA256%) of
Target is a 256bit va
Stored as a 32bit fie

egal block is smaller than a target
ue
d called bits in blocks

Largest target (targetmax) is defined by bits 0x1dOOffff:
0x00000000F FFF0000000000000000000000000000000000000000000000000000

Difficulty is defined with respect to the largest target:

difficulty =

largest target

target

45
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Bitcoin’s Block Difficulty

How long does it take to find a value smaller than
0x00000000FFFFOO00000000000000000000000000000000000000000000000000

Or simply:

O0xO00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFEFFFFEFFFEEFEE
?

But wait — the nonce field size...

46
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Bitcoin’s Block Difficulty

How is the target adjusted?

* Once every 2016 blocks (2016/7/24/6 = 2 weeks)
* 2016 blocks ago was ¢t
 Last block was tr

* Totaltimeis A = tf — t, seconds

* Difficulty before D,;,4
» Estimate of total hashes calculated: 2016 x 234D,

We want to find D,,,,, such that it will take the system 10
minutes on average to find a block. HW
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Agenda

Minimum of two exponentials and fair mining
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