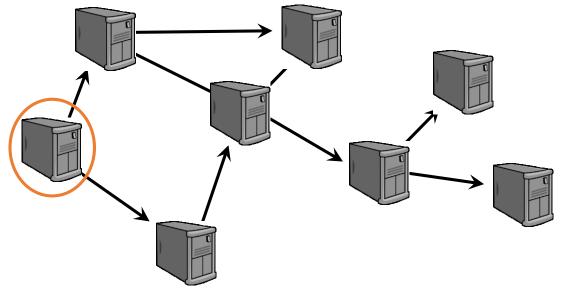
Principals and Practice of Cryptocurrencies

Cornell CS 5437, Spring 2016

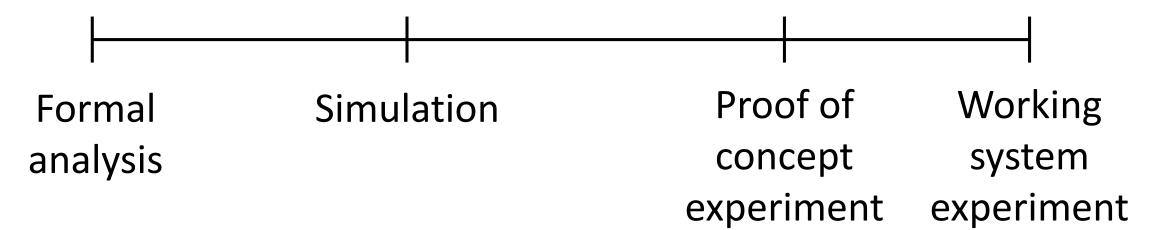
Simulation

Example – Gossip

- A messages is generated at one machine
- Message processing time: random 0 - 1sec
- After processing, node chooses random neighbor and sends message
- Sending time: random 0 – 1sec



Why A Simulation?



Why A Simulation?

					1
Formal S analysis	Simulation		Proof of concept Working system experiment experiment		
Formal Analysis	Simulation		Experiment		
Simple models	Complex models		Real worl	d	
Basic understanding, parameter interaction	Per-run results – cheap runs		Per-run results – expensive runs		
Scale to arbitrary system parameters	Cheap scaling		Expensive	e scaling	

- How complex a model?
 - Over-detailed --> overly complicated
 - Insufficient details --> inaccurate (or wrong)

Event Driven Simulation

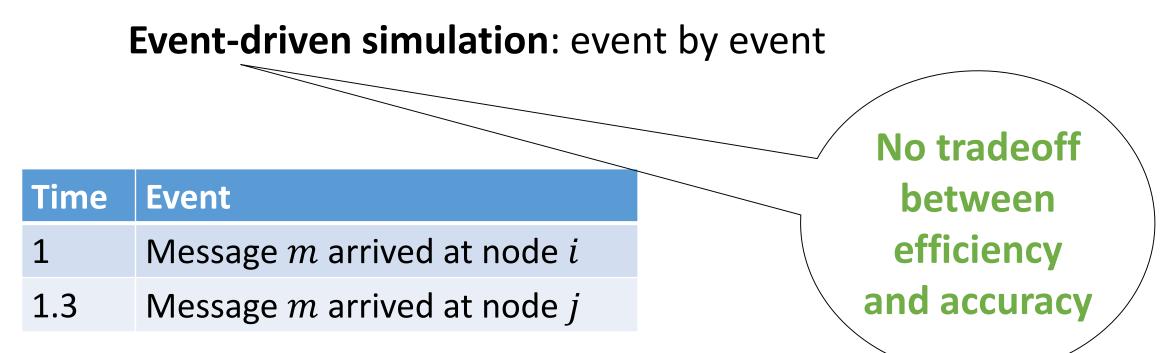
Time-driven simulation: second by second

Event-driven simulation: event by event

Which is more accurate?

Event Driven Simulation

Time-driven simulation: second by second



Process-Oriented Simulation

- Use an object per entity
- Store individual object state, and let object react to events

Time	Entity	Event
1	node <i>i</i>	Message m arrived
1.3	node <i>j</i>	Message m arrived

Input

Includes both model details and runtime inputs

- Synthetic, e.g.,
 - Topology of huge system
 - Input arrival times
- Traces, measurement-based, e.g.,
 - Input arrival times
 - Processing times

Output

Data collection:

- Output as much data as possible (probably in a log), but not too much it can easily explode. For example:
 - Message arrival time at each node: Can then calculate 90th percentile propagation time without re-running
 - But not every send / processing-start event

Tips:

- Output meaningful data during long runs
- Output execution parameters in log

Executions

Multiple executions

- Each with different random inputs
- Warmup
 - Do not consider for statistics
 - E.g., when multiple messages are propagated together, let queues stabilize
- Or a single long run, divided to sections

Restart and Avoiding It

- Memoize
 - Carefully while you're debugging...
- Checkpoint
 - For crash handling
 - If you decide continue, to avoid restart

- An experiment produces a random results, ω
- The sample space Ω is all possible results, $\omega \in \Omega$
- An Event is a subset of the sample space, $E \subset \Omega$

- Every event *E* has a **probability** $0 \le P[E] \le 1$
- The conditional probability of A given B is the probability of A given the B is true; $P[A|B] = \frac{P[A \cap B]}{P[B]}$
- A random variable is a function from the sample space to a discrete or continuous range
- A random variable has a Cumulative Distribution Function (CDF): $\begin{array}{c}F_X(x) = P(X \leq x) \\F_X(x) \xrightarrow{x \to -\infty} 0, \quad F_X(x) \xrightarrow{x \to \infty} 1\end{array}$
- A discrete random variable has a probability per value
- A continuous random variable has a probability distribution function $f_X(x) = F'_X(x)$

• The mean of a variable *X* is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• The variance of a variable X is $var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

Example – Bernoulli distribution

• Bernoulli distribution:

E.g., due to a biased coin toss, resulting in heads (ω_1) or tails (ω_2)

$$X = \begin{cases} 1 & \text{heads} \\ 0 & \text{tails} \end{cases}$$
$$P[X = 1] = p, P[X = 0] = 1 - p$$
$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p$$
$$var[X] = p(1 - p)$$

Example – Normal Distribution

E.g., height, measurement errors

$$N(\mu, \sigma^{2})$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

$$E[X] = \mu$$

$$var[X] = \sigma^{2}$$

The standard normal distribution is N(0, 1).

Example – Normal Distribution

The law of large numbers: The average of Independent and Identically Distributed (IID) random variables converges to the mean of the distribution they are sampled from.

The central limit theorem: the average of IID random variables is approximately normally distributed.

Example – Exponential Distribution

E.g., interval between phone calls

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$E[X] = 1/\lambda$$
$$var[X] = 1/\lambda^2$$

Memorylessness

For an exponential random variable, $F(x) = 1 - e^{-\lambda x}$:

$$P[X > s + t | X > t] = \frac{P[X > s + t \cap X > t]}{P[X > t]}$$

= $\frac{P[X > s + t]}{P[X > t]} = \frac{1 - F(s + t)}{1 - F(t)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}$
= $e^{-\lambda s} = 1 - F(s) = P[X > s]$

It doesn't matter how long you have been waiting for the bus

Psuedo Random Number Generator

- No real randomness
- PRNG has state and output
 - State changes on every output request (loops, but usually not an issue)
 - Can be reset with given seed
- >>> import random >>> random.random() 0.28651040107085957 3 >>> random.random() 4 0.1796791064694051 5 6 >>> random.seed(42) >>> random.random() 0.6394267984578837 8 9 >>> random.random() 0.02501075522266693 10 11 >>> random.seed(42)12 >>> random.random() 0.6394267984578837 13 14 >>> random.random() 15 0.02501075522266693

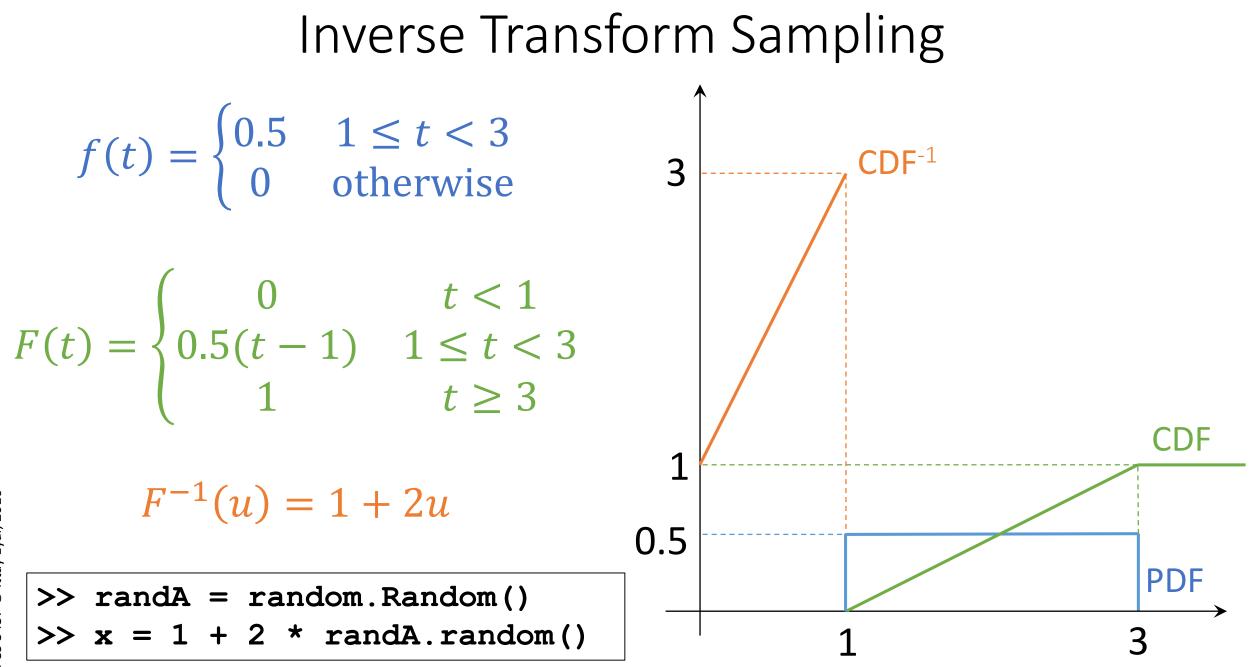
Use Object PRNG

- Program modular
- Reset global PRNG in each module?
- No object PRNG per module
- Seed module's PRNG on init

>>> randA = random.Random(42) 1 2 >>> randB = random.Random(42) >>> randA.random() 3 0.6394267984578837 4 >>> randB.random() 5 0.6394267984578837 6 >>> randA.random() 7 0.025010755222666936 8 >>> randB.random() 9 0.025010755222666936 10

PRNG for Simulation

- Different seeds for different runs
- Reproducibility (mostly for debugging)
 - Manually change between runs
 - Seed time, but record seed for reproduction



Given a finite set of measurements

- Estimate the properties of the sampled space
- Estimate the estimation accuracy

Stop when the accuracy is sufficient.

Take a sample of size $n \{x_i, 1 \le i \le n\}$ of independent measurements. E.g., simulation propagation times from n runs.

Sample are taken from a population with probability distribution with mean μ and variance σ^2 . (μ and σ are unknown)

• The sample mean is:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• The sample variance is:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

But the sample mean is a random variable.

The mean of \bar{x} is μ .

So \bar{x} is an estimator of μ

- \bar{x} is not μ , and
- S is not σ

What is the variance of \bar{x} ?

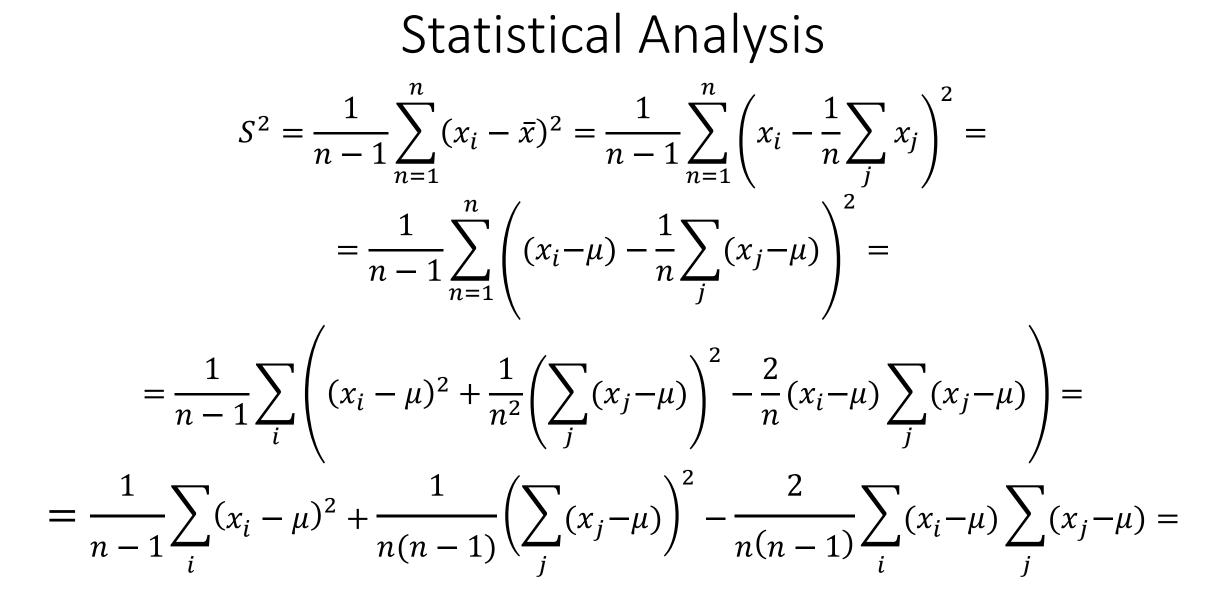
What is the variance of \bar{x} ?

$$\operatorname{var}[\bar{x}] = \frac{\sigma^2}{n}$$

More samples --> smaller variance --> \bar{x} probably closer to μ

But we can only take a finite number of samples n. And we don't have σ , only S. So we need to estimate σ^2 .

What is the mean of S^2 ?



$$\frac{1}{n-1}\sum_{i}(x_{i}-\mu)^{2} + \frac{1}{n(n-1)}\left(\sum_{j}(x_{j}-\mu)\right)^{2} - \frac{2}{n(n-1)}\sum_{i}(x_{i}-\mu)\sum_{j}(x_{j}-\mu) = \\ = \frac{1}{n-1}\sum_{i}(x_{i}-\mu)^{2} - \frac{1}{n(n-1)}\left(\sum_{i}(x_{i}-\mu)^{2} + \sum_{i}\sum_{j\neq i}(x_{i}-\mu)(x_{j}-\mu)\right) = \\ = \frac{1}{n}\sum_{i}(x_{i}-\mu)^{2} - \frac{1}{n(n-1)}\sum_{i}\sum_{j\neq i}(x_{i}-\mu)(x_{j}-\mu)$$

$$E[S^{2}] = \frac{1}{n} \sum_{i} E[(x_{i} - \mu)^{2}] - \frac{1}{n(n-1)} \sum_{i} \sum_{j \neq i} E[(x_{i} - \mu)(x_{j} - \mu)] = \sigma^{2}$$

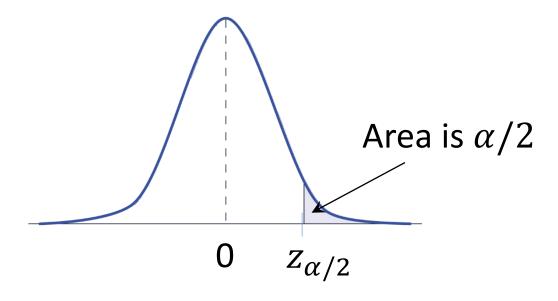
What is the mean of S^2 ? σ^2 .

Confidence Interval

With the standard normal distribution N(0, 1), define $z_{\alpha/2}$ to be the point for which the integral to the right is $\alpha/2$. (tables online)

$$P\left[-z_{\alpha/2} \le z \le z_{\alpha/2}\right] = 1 - \alpha$$

For example, for $\alpha = 0.05$, $z_{0.025} = 1.96$



Confidence

So how accurate is the estimate \bar{x} ?

If the x_i 's are normally distributed: $x_i = N(\mu, \sigma)$, let

$$Z = \frac{x - \mu}{\sigma} \sqrt{n}$$

Z is normally distributed Z = N(0, 1). So

$$P\left[-z_{\alpha/2} \le Z = \frac{\bar{x} - \mu}{\sigma} \sqrt{n} \le z_{\alpha/2}\right] = 1 - \alpha$$
$$P\left[\bar{x} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \le \mu \le \bar{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}}\right] = 1 - \alpha$$

For confidence level $1 - \alpha$,

the confidence interval is
$$\left[\bar{x} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}}, \bar{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}}\right]$$

Confidence Interval

- Since we don't have σ , we approximate with S.
- Although the x_i's are not necessarily normally distributed, according to the central limit theorem, it's a good approximation for their sum. Thumb rule: n ≥ 30.

Example

Index	Value
1	1.9
2	2.0
3	1.9
4	2.0
5	2.1
6	1.9
7	2.1
8	2.1
9	2.1
10	2.1

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 2.05$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 0.009$$

$$z_{0.05/2} = 1.96$$

$$\bar{x} \pm z_{0.05/2} \frac{S}{\sqrt{n}} = (1.99, 2.11)$$

Given a finite set of measurements

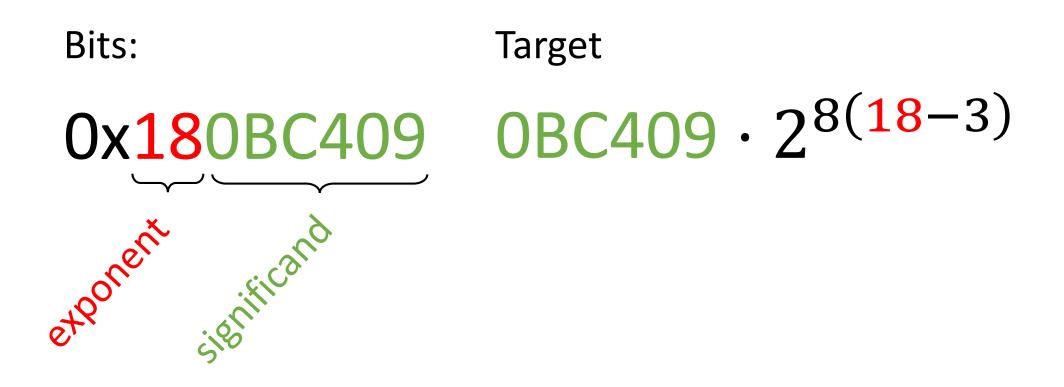
- Estimate the properties of the sampled space
- Estimate the estimation accuracy

Stop when the accuracy is sufficient.

E.g., the confidence interval is of length 0.01sec with a confidence level of 95%.

Difficulty and Block Interval

- Hash (SHA256²) of legal block is smaller than a **target**
- Target is a **256bit** value
- Stored as a **32bit** field called **bits** in blocks



- Hash (SHA256²) of legal block is smaller than a **target**
- Target is a **256bit** value
- Stored as a **32bit** field called **bits** in blocks
- Difficulty is defined with respect to the largest target:

difficulty =
$$\frac{\text{largest target}}{\text{target}}$$

How long does it take to find a value smaller than

Or simply:

?

But wait – the nonce field size...

How is the target adjusted?

- Once every 2016 blocks (2016/7/24/6 = 2 weeks)
- 2016 blocks ago was t_0
- Last block was t_f
- Total time is $\Delta = t_f t_0$ seconds
- Difficulty before *D*_{old}
- Estimate of total hashes calculated: $2016 \times 2^{32} D_{old}$

We want to find D_{new} such that it will take the system 10 minutes on average to find a block. HW

Agenda

- Difficulty calculation
- Time to find a block
- Difficulty automatic tuning
- Minimum of two exponentials and fair mining